Определения All

Материал из Прикладная алгебра

Содержание

- 1 Понятие группы, подгруппы, фактор-группы, индекса группы по подгруппе. Примеры. Теорема Лагранжа.
 - 1.1 Группа
 - 1.1.1 Свойства
 - 1.2 Факторгруппа
 - 1.3 Индекс подгруппы в группе
 - 1.4 Теорема Лагранжа
 - 1.5 Примеры
- 2 Понятие циклической группы. Структура подгрупп циклической группы. Количество порождающих элементов.
 - 2.1 Циклическая группа
 - 2.1.1 Свойства
 - 2.1.2 Пример
 - 2.2 Функция Эйлера
- 3 Понятие кольца, подкольца, фактор-кольца, евклидова кольца, идеала в кольце. Примеры.
 - 3.1 Кольцо
 - 3.1.1 Свойства
 - 3.1.2 Дополнительные требования
 - 3.1.3 Подкольцо
 - 3.2 Идеал
 - 3.2.1 Свойства
 - 3.3 Факторкольцо
 - 3.3.1 Примеры:
 - 3.4 Евклидово кольцо
 - 3.4.1 Примеры:
- 4 Расширенный алгоритм Евклида и его применение.
 - 4.1 Алгоритм
 - 4.2 Python
 - 4.3 Применение
- 5 Понятие поля. Построение конечных полей с помощью неприводимых многочленов (привести пример). Полиномиальное и степенное представление элементов поля.
 - 5.1 Поле
 - 5.1.1 Характеристика поля
 - 5.1.2 Свойства:
 - 5.1.3 Примеры полей:
 - 5.2 Построение поля Галуа
 - 5.2.1 Пример построения поля GF(9)
 - 5.2.2 Таблица сложения в GF(9)
 - 5.2.3 Таблица умножения в GF(9)
- 5.3 Степенное представление элементов поля
- 6 Алгоритм нахождения всех корней многочлена f(x) над полем $\mathrm{Tole}(F)$ (р) \$
- 7 Минимальные многочлены для элементов конечного поля. Алгоритм нахождения минимального многочлена.
 - 7.1 Построение:
- 8 Теорема Хэмминга. Пример построения кода Хэмминга.
- 9 Определение
 - 9.1 Теорема Хэмминга
 - 9.2 Пример
- 10 Коды БЧХ: определение, примеры кодов с исправлением одной, двух и трех ошибок.
 - 10.1 Построение БЧХ кодов:
 - 10.2 Пример кода, исправляющего 1 ошибку
 - 10.3 Пример кода, исправляющего 2 ошибки
 - 10.4 Пример кода, исправляющего 3 ошибки
- 11 Понятие действия группы на множестве, фиксатор и стабилизатор. Примеры.
 - 11.1 Действие слева
 - 11.2 Действие справа
 - 11.3 Комментарии
 - 11.4 Фиксатор
 - 11.5 Стабилизатор
- 12 Лемма Бернсайда и её применение.
 - 12.1 Лемма Бернсайда
 - 12.2 Пример
- 13 Цикловой индекс действия группы
- 14 Группы симметрий правильных многоугольников (диэдральные группы) и группы вращений правильных многогранников.
 Примеры. Их цикловые индексы.
- 15 Теорема Редфилда-Пойа и её применение
 - 15.1 Цикловой индекс действия группы

- 15.2 Теорема Редфилда-Пойа
- 15.3 Пример
- 16 Идеалы и фильтры частично упорядоченного множества. Конусы. Точные грани.
 - 16.1 Определение
- 17 Идеал частично упорядоченного множества
- 18 Фильтр частично упорядоченного множества
- 19 Конус
- 20 Точные грани
- 21 Теорема Шпильрайна. Линейное продолжение частично упорядоченного множества
- 22 Определение
 - 22.1 Теорема Шпильрайна
- 23 Спектр и размерность частично упорядоченного множества
 - 23.1 Определение
 - 23.2 Спектр частично упорядоченного множества
 - 23.3 Размерность
- 24 Фундаментальная теорема о конечных дистрибутивных решётках.
 - 24.1 Определения
 - 24.2 Фундаментальная теорема о конечных дистрибутивных решётках
- 25 Соответствия Галуа.
 - 25.1 Определениея

Понятие группы, подгруппы, фактор-группы, индекса группы по подгруппе. Примеры. Теорема Лагранжа.

Группа

Непустое множество G с заданной на нём бинарной операцией $*:G \times G \to G$ называется группой (G,*), если выполнены следующие аксиомы:

- 1. ассоциативность: $\forall (a, b, c \in G) : (a * b) * c = a * (b * c)$
- 2. наличие нейтрального элемента: $\exists e \in G \quad \forall a \in G : (e*a=a*e=a)$
- 3. наличие обратного элемента: $\forall a \in G \quad \exists a^{-1} \in G : (a*a^{-1}=a^{-1}*a=e)$
- lacktriangle Подгруппа подмножество H группы G, которое является группой относительно операции, определённой в G.
- Подгруппа N группы G называется **нормальной**, если она инвариантна относительно сопряжений, то есть для любого элемента n из N и любого g из G, элемент gng^{-1} лежит в N:

Свойства

ullet Свойство сократимости $\{a,b,c\}\in G, a
eq b
ightarrow cst a
eq cst b$

Факторгруппа

Пусть G — группа, и H — её нормальная подгруппа. Тогда на классах смежности H в G

$$aH = \{ah \mid h \in H\}$$

можно ввести умножение:

$$(aH)(bH) = abH$$

Легко проверить что это умножение не зависит от выбора элементов в классах смежности, то есть если aH=a'H и bH=b'H, то abH=a'b'H. Это умножение определяет структуру группы на множестве классов смежности, а полученная группа G/H называется факторгруппой G по H.

Индекс подгруппы в группе

Индекс подгруппы H в группе G — число классов смежности в каждом (правом или левом) из разложений группы G по этой подгруппе H (в бесконечном случае — мощность множества этих классов).

Индекс подгруппы H в группе G обычно обозначается [G:H].

Теорема Лагранжа

Пусть группа G конечна и H — её подгруппа. Тогда порядок G равен порядку H, умноженному на количество её левых или правых классов смежности (индекс). |G| = |H| * (G:H). Обратное утверждение неверно.

Примеры

- Целые числа с операцией сложения. $(\mathbb{Z}, +)$ коммутативная группа с нейтральным элементом 0.
- **Положительные рациональные числа с операцией умножения.** Произведение рациональных чисел снова рациональное число, обратный элемент к рациональному числу представляется обратной дробью, имеется ассоциативность и единица.
- **Циклические группы** состоят из степеней $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}$ одного элемента **a**. Такие группы всегда коммутативны. Примеры таких групп упомянутые уже

целые числа по сложению и группа корней из единицы.

• Симметрическая группа группа перестановок.

Понятие циклической группы. Структура подгрупп циклической группы. Количество порождающих элементов.

Циклическая группа

Группа (G,\cdot) называется **циклической**, если она может быть *порождена* одним элементом a, то есть все её элементы являются степенями a. Обозначение: $G=\langle a \rangle$.

Любая конечная циклическая группа порядка n изоморфна аддитивной группе классов вычетов \mathbb{Z}_n . Отсюда вытекает, что, с точностью до изоморфизма, существует только одна конечная циклическая группа данного порядка.

Свойства

- Любая подгруппа циклической группы тоже циклична. Циклической будет и всякая фактор-группа циклической группы *G/H*.
- У циклической группы порядка n существует ровно $\phi(n)$ порождающих элементов, где ϕ функция Эйлера
- У циклических подгрупп всегда найдется единственная подгруппа, порядок которой равен порядку делителя.

Пример

$$\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$$

порядок	подгруппа	k	количество порождающих
0	{0}	1	1
1	{1,2,3,4,5,0}	6	2
2	{2,4,0}	3	2
3	{3,0}	2	1
4	{4,2,0}	3	2
5	{5,4,3,2,1,0}	6	2

берем порядок, складываем с собой. получаем подгруппу.

Функция Эйлера

Функция Эйлера $\varphi(n)$ — мультипликативная арифметическая функция, равная количеству натуральных чисел, меньших n и взаимно простых с ним. При этом полагают, что число 1 взаимно просто со всеми натуральными числами, и $\varphi(1)=1$.

Понятие кольца, подкольца, фактор-кольца, евклидова кольца, идеала в кольце. Примеры.

Кольно

Кольцо — это множество R, на котором заданы две бинарные операции: + и × (называемые **сложение** и **умножение**), со следующими свойствами, выполняющимися для любых $a,b,c \in R$:

Свойства

- По сложению абелева группа
- По умножению дистрибутивность (левая и правая)
- 1. a + b = b + a— коммутативность сложения;
- 2. a + (b + c) = (a + b) + c— ассоциативность сложения;

- 3. $\exists 0 \in R \ (a+0=0+a=a)$ существование нейтрального элемента относительно сложения;
- 4. $\forall a \in R \ \exists b \in R (a+b=b+a=0)$ существование противоположного элемента относительно сложения;
- 5. $(a \times b) \times c = a \times (b \times c)$ ассоциативность умножения

6.
$$\begin{cases} a\times(b+c)=a\times b+a\times c\\ (b+c)\times a=b\times a+c\times a \end{cases}$$
— дистрибутивность.

Дополнительные требования

- Отсутствие делителей нуля (целостное кольцо)
- Наличие единицы по умножению
- Коммутативность по умножению
- Обратный элемент по умножению

Если все свойства выполнены, то получим поле.

Подкольцо

Подмножество $A\subset R$ называется **подкольцом** R, если A само является кольцом относительно операций, определенных в R. По определению, оно непусто, поскольку содержит нулевой элемент. Эквивалентно, непустое подмножество $A\subset R$ является подкольцом, если для любых x и y из A, x+y, xy и -x также принадлежат A.

Идеал

Для кольца R идеалом \mathbb{I} называется подкольцо, замкнутое относительно умножения на элементы из R. При этом идеал называется **левым** (соответственно **правым**), если он замкнут относительно умножения слева (соответственно справа) на элементы из R. Идеал, являющийся одновременно левым и правым, называется **двусторонним**. Двусторонний идеал часто называется просто идеалом. В коммутативном случае все эти три понятия совпадают и всегда применяется термин uдеал.

Свойства

- По сложению подгруппа группы кольца
- ullet $\forall i \in I, r \in R
 ightarrow r * i \in I$

Факторкольцо

Пусть I — двусторонний идеал кольца R. Определим на R отношение эквивалентности:

 $a\sim b$ тогда и только тогда, когда $a-b\in I$.

Класс эквивалентности элемента a обозначается как [a] или a+I и называется классом смежности по модулю идеала. Факторкольцо R/I — это множество классов смежности элементов R по модулю I, на котором следующим образом определены операции сложения и умножения:

Примеры:

- lacktriangled Пусть $\mathbb Z$ кольцо целых чисел, $n\mathbb Z$ идеал, состоящий из чисел, кратных n . Тогда $\mathbb Z/n\mathbb Z$ кольцо вычетов по модулю n .
- Рассмотрим кольцо многочленов с действительными коэффициентами $\mathbb{R}[x]$ и идеал, состоящий из многочленов, кратных x^2+1 . Факторкольцо $\mathbb{R}[x]/(x^2+1)$ изоморфно полю комплексных чисел: класс [x] соответствует мнимой единице. Действительно, в факторкольце элементы x^2+1 и 0 эквивалентны, то есть $x^2=-1$.
- Обобщая предыдущий пример, факторкольца часто используют для построения расширений полей. Пусть K некоторое поле и f(x) неприводимый многочлен в K[x]. Тогда K[x]/(f(x)) является полем, и это поле содержит по крайней мере один корень многочлена f(x) класс смежности элемента x.
- Важный пример использования предыдущей конструкции построение конечных полей. Рассмотрим конечное поле $\mathbb{Z}/2\mathbb{Z}$ из двух элементов и в этом контексте обычно обозначается как \mathbb{F}_2 . Многочлен x^2+x+1 неприводим над этим полем (так как не имеет корней), следовательно, факторкольцо $\mathbb{F}_2[x]/(x^2+x+1)$ является полем. Это поле состоит из четырёх элементов: 0, 1, x и x+1. Все конечные поля можно построить аналогичным образом.

Евклидово кольцо

Eвклидово кольцо — это область целостности(ассоциативное коммутативное кольцо без делителей нуля) R, для которой определена **евклидова функция** (eвклидова норма) d: $R \to \mathbb{N}_0 \cup \{-\infty\}$, причём $d(a) = -\infty \Leftrightarrow a = 0$ и возможно деление с остатком, по норме меньшим делителя, то есть для любых $a,b \in R, b \neq 0$ имеется представление a = bq + r, для которого d(r) < d(b)или r = 0. В Евклидовом кольце работает алгоритм Евклида.

Примеры:

- Кольцо целых чисел Z. Пример евклидовой функции | |.
- \blacksquare Произвольное поле K является евклидовым кольцом с нормой, равной 1 для всех элементов, кроме 0.
- lacktriangle Кольцо многочленов одной переменной K[x] над полем K . Пример евклидовой функции степень Deg

Расширенный алгоритм Евклида и его применение.

Алгоритм

```
egin{aligned} r_0 &= a \ x_0 &= 1 \ y_0 &= 0 \ r_1 &= b \ x_1 &= 0 \ y_1 &= 1 \ & \dots \ r_{i+1} &= r_{i-1} - q_i r_i \ x_{i+1} &= x_{i-1} - q_i x_i \ y_{i+1} &= y_{i-1} - q_i y_i \ & \dots \end{aligned}
```

Алгоритм завершается, когда $r_{i+1} = 0$.

Python

def egcd(a, b):

```
if a == 0:
    return (b, 0, 1)
else:
    g, y, x = egcd(b % a, a)
    return (g, x - (b // a) * y, y)
```

Применение

- lacktriangle Решение уравнений a*x+b*y=GCD(a,b)
- lacktriangleleft Обратный элемент в полях Галуа $\mathbb{F}_p[x]/(a(x))$. Пусть нужно найти обратный элемент y(x) к b(x).

Алгоритм Евклида применим для евклидовых колец. Пример такого кольца - кольцо многочленов.

Понятие поля. Построение конечных полей с помощью неприводимых многочленов (привести пример). Полиномиальное и степенное представление элементов поля.

Поле

Поле — алгебра над множеством F, образующая коммутативную группу по сложению + над F с нейтральным элементом 0 и коммутативную группу по умножению над ненулевыми элементами $F\setminus\{0\}$, при выполняющемся свойстве дистрибутивности умножения относительно сложения.

Характеристика поля

Пусть $\mathbb F$ - произвольное поле. 1 - единица $\mathbb F$. В конечном поле всегда найдется первое k, что $\sum_{i=1}^k 1=0$. Число k будем называть характеристикой поля $\mathbb F$.

Свойства:

- Характеристика поля всегда 0 или простое число.
 - lacktriangled Поле характеристики 0 содержит подполе, изоморфное полю рациональных чисел \mathbb{Q} .
 - lacktriangle Поле простой характеристики p содержит подполе, изоморфное полю вычетов \mathbb{Z}_p .
- Количество элементов в конечном поле всегда равно p^n степени простого числа.
 - При этом для любого числа вида p^n существует единственное (с точностью до изоморфизма) поле из p^n элементов, обычно обозначаемое \mathbb{F}_{p^n} .
- В поле нет делителей нуля.
- Любая конечная подгруппа мультипликативной группы поля является циклической. В частности, мультипликативная группа

ненулевых элементов конечного поля \mathbb{F}_q изоморфна \mathbb{Z}_{q-1} .

Примеры полей:

- Q рациональные числа,

- \mathbb{R} вещественные числа, \mathbb{C} комплексные числа, \mathbb{Z}_p поле вычетов по модулю p, где p простое число.
- lacktriangledown \mathbb{F}_q конечное поле из $q=p^k$ элементов, где p простое число, k натуральное. Все конечные поля имеют такой вид.
- \blacksquare $\mathbb{F}(x)$ поле рациональных функций вида f(x)/g(x), где f и g многочлены над некоторым полем \mathbb{F} (при этом $g \neq 0$, а fи g не имеют общих делителей, кроме констант).

Неприводимый многочлен — многочлен, неразложимый на нетривиальные (неконстантные) многочлены. В поле $\mathbb R$ существуют неприводимые многочлены 1-й и 2-й степени(с отрицательным дискриминантом) В поле $\mathbb C$ существуют неприводимые многочлены

Построение поля Галуа

Поле $\mathrm{GF}(p^n)$ при n>1 строится как факторкольцо $\mathbb{K}=\mathbb{Z}_p[x]/\langle f(x)
angle$, где f(x) — неприводимый многочлен степени n над полем \mathbb{Z}_p . Таким образом, для построения поля из p^n элементов достаточно отыскать многочлен степени n, неприводимый над полем \mathbb{Z}_p . Элементами поля $\mathbb K$ являются все многочлены степени меньшей n с коэффициентами из $\mathbb Z_p$. Арифметические операции (сложение и умножение) проводятся по модулю многочлена f(x), то есть, результат соответствующей операции — это остаток от деления на f(x)с приведением коэффициентов по модулю p.

Пример построения поля GF(9)

Для построения поля $\mathrm{GF}(9)=\mathrm{GF}(3^2)$ необходимо найти многочлен степени 2, неприводимый над \mathbb{Z}_3 . Такими многочленами являются:

$$x^{2} + 1$$
 $x^{2} + x + 2$
 $x^{2} + 2x + 2$
 $2x^{2} + 2$
 $2x^{2} + x + 1$
 $2x^{2} + 2x + 1$

Возьмём, например, x^2+1 , тогда искомое поле есть $\mathrm{GF}(9)=\mathbb{Z}_3[x]/\langle x^2+1
angle$. Если вместо x^2+1 взять другой многочлен, то получится новое поле, изоморфное старому.

Таблица сложения в GF(9)

$$\mathrm{GF}(9) = \mathbb{Z}_3[x]/\langle x^2 + 1 \rangle$$

+	0	1	2	x	x+1	x+2	2x	2x+1	2x + 2
0	0	1	2	x	x+1	x+2	2x	2x + 1	2x + 2
1	1	2	0	x+1	x+2	x	2x + 1	2x + 2	2x
2	2	0	1	x+2	x	x+1	2x + 2	2x	2x + 1
\boldsymbol{x}	\boldsymbol{x}	x+1	x+2	2x	2x + 1	2x + 2	0	1	2
x+1	x+1	x+2	x	2x+1	2x + 2	2x	1	2	0
x+2	x+2	x	x+1	2x + 2	2x	2x + 1	2	0	1
2x	2x	2x + 1	2x + 2	0	1	2	x	x+1	x+2
2x + 1	2x + 1	2x + 2	2x	1	2	0	x+1	x+2	x
2x + 2	2x + 2	2x	2x+1	2	0	1	x+2	x	x+1

Таблица умножения в GF(9)

$$\mathrm{GF}(9) = \mathbb{Z}_3[x]/\langle x^2+1
angle$$

×	0	1	2	x	x+1	x+2	2x	2x+1	2x + 2
0	0	0	0	0	0	0	0	0	0
1	0	1	2	x	x+1	x+2	2x	2x + 1	2x + 2
2	0	2	1	2x	2x + 2	2x + 1	x	x+2	x+1
x	0	\boldsymbol{x}	2x	2	x+2	2x + 2	1	x+1	2x+1
x+1	0	x+1	2x + 2	x+2	2x	1	2x + 1	2	\boldsymbol{x}
x+2	0	x+2	2x + 1	2x + 2	1	x	x+1	2x	2
2x	0	2x	x	1	2x + 1	x+1	2	2x + 2	x + 2
2x + 1	0	2x + 1	x+2	x+1	2	2x	2x + 2	x	1
2x + 2	0	2x + 2	x+1	2x+1	x	2	x+2	1	2x

Степенное представление элементов поля

Заметим, что

- $(x+1)^1 = x+1$
- $(x+1)^2 = 2x$
- $(x+1)^3 = 2x+1$
- $(x+1)^4=2$
- $(x+1)^5 = 2x+2$
- $(x+1)^6 = x$
- $(x+1)^7 = x+2$
- $(x+1)^8=1$

Следовательно, x+1 является *примитивным элементом* построенного поля. Если a - примитивным элемент поля $\mathrm{GF}(q)$, то любой другой элемент поля может быть получен как степень a^k , где k - целое число, взаимно простое с q-1.

Алгоритм нахождения всех корней многочлена f(x) над полем $\mathbb{F} p$

- lacksquare Разложим многочлен f(x) на неприводимые множители над $\mathbb{F} p$
 - $f(x) = g_1(x) * g_2(x) * \dots * g_k(x)$
- $lacksymbol{\square}$ Для каждого многочлена $g_i(x), i \in \{1,\dots k\}$ рассмотреть расширение $\mathbb{F}_p[x]/\langle g_i(x)
 angle$, в котором он будет иметь корни $lpha, lpha^p,\dots,lpha^{p^{deg(g_i-1)}}$
- \blacksquare Записать эти корни как многочлены из $\mathbb{F}_p[x]/\langle g_i(x)
 angle$
- $lacksymbol{\mathbb{F}}$ Объединить все корни в общем расширении $lacksymbol{\mathbb{F}}_p^m$, где $m=LCM(deg(g_1),\ldots,deg(g_k))$

Источник: 148 слайд (311 страница)

Минимальные многочлены для элементов конечного поля. Алгоритм нахождения минимального многочлена.

Рассмотрим поле \mathbb{F}_p^n , в нем какой-нибудь элемент β и будет интересоваться многочленами, для которых β является корнем.

• Многочлен m(x) называется минимальным многочленом, если m(x) - нормированный многочлен минимальной степени, для которого β является корнем.

Построение:

Пусть задано поле $\mathbb{F}=\mathbb{F}_p[x]/\langle a(x)
angle$, где $a(x)=a_0+a_1*x+a_2*x^2+\cdots+a_n*x^n$ - неприводимый многочлен. Тогда для элемента $x\in F$ многочлен $a_n^{-1}*a(x)$ - минимальный.

Теорема Хэмминга. Пример построения кода Хэмминга.

Определение

Пусть n - длина кода, r - максимальное допустимое число ошибок.

Теорема Хэмминга

При 2 * r < n максимальное число кодовых слов t находится в пределах:

$$\frac{2^n}{\binom{n}{0}+\binom{n}{1}+\ldots+\binom{n}{2*r}} \leq t \leq \frac{2^n}{\binom{n}{0}+\binom{n}{1}+\binom{n}{1}+\ldots+\binom{n}{r}}$$

Пример

Построим код Хэмминга длины 7. Выпишем таблицу: $n=2^q-1 o q=3, r=1$ Матрица состоит из единичной матрицы, размерности $2^q - q - 1$ и матрицы из бинарных наборов(различных) длины q, содержащих не менее 2-х единиц.

1	0	0	0	1	0	1
0	1	0	0	1	1	0
0	0	1	0	0	1	1
0	0	0	1	1	1	1

Складывая строки произвольным образом (mod 2), получим 16 возможных сообщений. При их получении можно будет исправить одну ошибку.

Коды БЧХ: определение, примеры кодов с исправлением одной, двух и трех ошибок.

БЧХ коды - класс циклических кодов, исправляющих кратные (2 и более ошибок). БЧХ код задается порождающим полиномом. Для его построения необходимо задать длину кода и требуемое минимальное расстояние $d \le n$.

Построение БЧХ кодов:

- Строим поле $\mathbb{F}_2^n = \mathbb{F}_2[x]/\langle f \rangle$, где f неприводимый многочлен степени $n=2^m-1$.

 Выберем в циклической группе \mathbb{F}_2^{n*} примитивный элемент $\alpha \in \mathbb{F}_2^{n*}$ и рассмотрим его степени: $\alpha, \alpha^2, \cdots, \alpha^{2*r}$, где r число ошибок, которые нужно исправить.
- В разложении многочлена x^n-1 выберем такие неприводимые многочлены, чтобы каждая из указанных степеней была корнем одного из них (это не всегда возможно). Тогда:
 - ullet ϕ есть результат перемножения этих многочленов
 - коды коэффициенты многочленов из идеала (ϕ)
 - эти коды исправляют г ошибок

Пример кода, исправляющего 1 ошибку

Рассмотрим поле $\mathbb{F}_2^3=\mathbb{F}_2[x]/(x^3+x+1)$. r=3, m=2. Многочлен x^3+x+1 - примитивный над $\mathbb{F}2$. Порождающий полином x^3+x+1 , т.к пусть α - его произвольный корень, тогда остальные корни α^2 , α^4 и они входят в один смежный класс.

Пример кода, исправляющего 2 ошибки

Рассмотрим поле $\mathbb{F}_2^4=\mathbb{F}_2[x]/(x^{15}-1)$. $lpha,lpha^2,lpha^3,lpha^4$

$$x^4 + x + 1 x^4 + x^3 + 1$$

Пример кода, исправляющего 3 ошибки

 $r=3, m=4, f(x)=x^{15}-1$ Следовательно, нужно найти многочлены, корнями которых будут первые 2*r=6 степеней порождающего элемента α

	если многочлен имеет корень	то у него есть корни
1	α	$lpha^2, lpha^4, lpha^8$
2	α^3	$\alpha^2, \alpha^4, \alpha^8$
3	$lpha^5$	$lpha^{10}$

Перемножим полученные многочлены, получим многочлен 10-й степени. (первые 2 - четвертой, последний - второй). Идеал по модулю этого многочлена дает 5 степеней свободы, следовательно, построенный код будет 5-мерным пространством.

Понятие действия группы на множестве, фиксатор и стабилизатор. Примеры.

Гомоморфизм групп - Отображение групп f:(G,*) o (H, imes)такое, что f(a*b)=f(a) imes f(b)для произвольных a и b в G.

Симметрической группой множества X называется группа всех перестановок X (то есть биекций X o X) относительно

операции композиции.

Инверсная группа — построение в теории групп, сменяющее аргументы бинарной групповой операции местами, используемое для определения правого действия.

Действие слева

Говорят, что **группа** G действует слева на множестве M, если задан гомоморфизм $\Phi\colon G\to S(M)$ из группы G в симметрическую группу S(M) множества M. Для краткости $(\Phi(g))(m)$ часто записывают как $gm,g\cdot m$ или g.m. Элементы группы G называются в этом случае polyproperator а сама группа G— **группой преобразований** множества M.

Другими словами, группа G действует на множестве M, если задано отображение $G \times M \to M$. обозначаемое (g,m) = gm, такое что

- 1. (gh)m=g(hm) для всех $g,\;h\in G,m\in M$ и
- 2. em=m, где e нейтральный элемент группы G. Можно сказать, что единица группы соотносит каждому элементу M его же; такое преобразование называется **тождественным**.

Действие справа

Аналогично, **правое действие** группы G на M задается гомоморфизмом $\rho:G^{op}\to S(M)$, где G^{op} — инверсия группы G. При этом часто используют сокращенное обозначение: $\rho(g)(m)=:xg$. При этом аксиомы гомоморфизма записываются следующим образом:

- $1. \ m(gh) = (mg)h,$
- 2. $m\vec{e} = m$.

Комментарии

■ Любое правое действие группы G — это левое действие группы G^{op} . Также, так как каждая группа изоморфна своей инверсной группе (изоморфизмом является, например, отображение $g \mapsto g^{-1}$), то из каждого правого действия можно с помощью такого изоморфизма получить левое действие. Поэтому, как правило, исследуются только левые действия.

Фиксатор

Зафиксируем перестановки и найдем все элементы множества, которые перестановка оставит на месте. Множество таких элементов фиксатор. $Fix(g) = \{m \in M : g(m) = m\} \subseteq M$

Стабилизатор

Зафиксируем элементы и найдем все перестановки, которые оставляют данный элемент неподвижным. Множество таких перестановок - стабилизатор. $Stab(m) = \{g \in G : g(m) = m\} \subseteq G$

Лемма Бернсайда и её применение.

Подмножество

$$Gm = \{gm \mid g \in G\} \subset M$$

называется орбитой элемента $m \in M$.

Действие группы G на множестве M определяет на нём отношение эквивалентности

$$\forall n, \ m \in M \ (n \sim_{_G} m) \Longleftrightarrow (\exists g \in G \ : \ gn = m) \Longleftrightarrow (Gn = Gm).$$

При этом классами эквивалентности являются орбиты элементов. Поэтому, если общее число классов эквивалентности равно k, то

$$M = Gm_1 \sqcup Gm_2 \sqcup \ldots \sqcup Gm_k$$

где $m_1, m_2, \ldots, m_k \in M$ попарно неэквивалентны. Для транзитивного действия k=1.

Лемма Бернсайда

Пусть G — конечная группа, действующая на множестве X. Для любого элемента g из G будем обозначать через Fix(g) множество элементов X, оставляемых на месте g. Лемма Бёрнсайда даёт формулу числа орбит группы G, обозначаемого C(G):

$$C(G) = \frac{1}{|G|} \sum_{g \in G} |Fix(g)|.$$

Пример

• Составляются слова длины $l \geq 2$ из алфавита $A = a_1, a_2, \cdots, a_m$. Слова считаются эквивалентными, если они получаются одно из другого перестановкой крайних букв. Определить число S неэквивалентных слов.

Решение: Пусть Т - множество слов длины l в алфавите А. $N=|T|=m^l$. Представим эквивалентности как орбиты некоторого действия подходящей группы G на Т. Поскольку $g^2=e$, то подходящей группой будет $G=\mathbb{Z}_2=\{e,g\}$. Действие g переставляет в слове две крайние буквы. Число S неэквивалентных слов есть число классов эквивалентности C(G) действия $\mathbb{Z}_2:T$.

$$|Fix(e)|=|T|=m^l, |Fix(g)|=m^{l-2}*m=m^{l-1}$$
 $S=C(\mathbb{Z}_2)=rac{1}{2}*\sum_{g\in G}|Fix(g)|=rac{m^l+m^{l-1}}{2}=rac{m^{l-1}*(m+1)}{2}\,l=3, m=2, S=6$

Цикловой индекс действия группы

Существует универсальный способ вычисления числа орбит $C(G)=rac{1}{|G|}\sum_{g\in G}|Fix(g)|$.. Сопоставим каждой перестановке $g\in \mathbb{G}$ вес w(g) по правилу:

$$Type(g)=\leq v_1,v_2,v_3,\cdots,v_n\geq$$
 где v_i - количество циклов длины і для перестановки д. $w(g)=x_1^{v_1}*\ldots*x_N^{v_N}$

Цикловой индекс группы G определяется как многочлен от n переменных x_1, x_2, \ldots, x_n

$$P = rac{1}{|G|} \sum_{g \in G} x_1^{v_1(g)} \cdot x_2^{v_2(g)} \cdot \ldots \cdot x_n^{v_n(a)}$$

Группы симметрий правильных многоугольников (диэдральные группы) и группы вращений правильных многогранников. Примеры. Их цикловые индексы.

D3 = S3 (для треугольника = симметрической группе для 3 элементов)

Рассматривает многоульник. Рассмотрим преобразования, которые его переводят в самого себя

- Отражения
- Повороты

Задача: группа октаедра (не будет) только куб посчитать цикловой индекс

Вычислены цикловые индексы и есть формула для произвольного n (http://mathworld.wolfram.com/DihedralGroup.html)

Теорема Редфилда-Пойа и её применение

Цикловой индекс действия группы

Существует универсальный способ вычисления числа орбит $C(G)=rac{1}{|G|}\sum_{g\in G}|Fix(g)|$. Сопоставим каждой перестановке $g\in \mathbb{G}$ вес w(g) по правилу:

$$Type(g)=\langle v_1,v_2,v_3,\cdots,v_n
angle$$
, где v_i - количество циклов длины і для перестановки д. $w(g)=x_1^{v_1}*\ldots*x_N^{v_N}$

Цикловой индекс группы G определяется как многочлен от n переменных x_1, x_2, \ldots, x_n

$$P=rac{1}{|G|}\sum_{g\in G}x_1^{v_1(g)}\cdot x_2^{v_2(g)}\cdot\ldots\cdot x_n^{v_n(a)}$$

Теорема Редфилда-Пойа

К множеству $\mathbb{T}, |\mathbb{T}|=N$, группе $\mathbb{G}, |\mathbb{G}|=n$ и действию $\mathbb{G}\alpha:\mathbb{T}$ добавим множество $\mathbb{R}=\{c_1,c_2,\ldots,c_r\}$ меток и совокупность функций $F=R^T$ приписывания элементам меток. \mathbb{G} , действуя на \mathbb{T} , действует и на R^T . Дадим вес элементам R:

$$w(c_i) = y_i \forall i = 1, 2, \ldots, r$$

Цикловой индекс действия группы G на R^T есть $W(F)=P(\mathbb{G}lpha:R^T)=P(\mathbb{G}lpha:T,x_1,x_2,\ldots,x_N)$ причем $x_k=y_1^k+\ldots+y_r^k$

Теорему Редфилда-Пойа можно использовать для вычисления числа разметок данного типа (содержащих данное количество элементов конкретного типа). Лемму Бернсайда можно использовать для вычисления общего количества неэквивалентных разметок.

Пример

Задача об ожерельях - 5 бусин, 3 цвета (красный, зеленый, синий). Ожерелья считаются одинаковыми, если они совпадают при их повороте или перевороте. Сколько существует различных ожерелий, содержащих 2 красные бусины?

$$x_1=y_1+y_2+y_3, x_2=y_1^2+y_2^2+y_3^2, \ldots, x_k=y_1^k+y_2^k+y_3^k$$
 $w(\mathsf{KPACHbIX})=y1, w(\mathsf{CVHMX})=y2, w(\mathsf{3EЛЕHbIX})=y3$ $y_1=y,y_2=y_3=1$ $x_1=y+2, x_2=y^2+2, \ldots, x_5=y^5+2$ $P(x_1,x_2,\ldots,x_5)=\frac{1}{10}*(x_1^5+4*x_5+5*x_1*x_2^2)$ (было посчитано в простой задаче на ожерелья) $P(y)=\sum_{i=1}^5 u_i*y^i$ $P(y)=\frac{1}{10}*(u_0+u_1*u+u_2*y^2+\ldots+u_5*y^5)=\frac{1}{10}*((y+2)^5+4*(y^5+2)+5*(y+2)*(y^2+2)^2)$ $P(y)=\frac{1}{10}*(\ldots+(10*8+5*2*4)*y^2+\ldots)\to u_2=12$

Идеалы и фильтры частично упорядоченного множества. Конусы. Точные грани.

Определение

Порядком, или **частичным порядком**, на множестве P называется бинарное отношение \leq на P (определяемое некоторым множеством $R_{<} \subset M \times M$), удовлетворяющее следующим условиям

- lacktriangle Рефлексивность: $orall a \ (a \leq a)$
- ullet Транзитивность: $orall a,b,c\ (a\leq b)\&(b\leq c)\Rightarrow a\leq c$
- ullet Антисимметричность: $orall a,b\ (a\leq b)\&(b\leq a)\Rightarrow a=b$

Частично упорядоченным множеством называется пара $\langle P, \leq
angle$, где P — множество, а \leq — отношение частичного порядка на P.

Идеал частично упорядоченного множества

Подмножество J элементов частично упорядоченного множества $\langle P, \leq \rangle$ называется его идеалом(порядковым), если: $(x\in J)\&(y\leq x) o y\in J$

Фильтр частично упорядоченного множества

Подмножество F элементов P называется его фильтром(порядковым), если: $(x \in F)\&(x \leq y) o y \in F$

Конус

Пусть $\langle P,\leq
angle$ частично упорядоченное множество и $A\subseteq P$. Множества $A^ riangle$ и $A^ riangle$ определяемые условиями:

- $ullet A^{ riangle} = \{x \in P | orall a \in A(a \leq x)\} \ ullet A^{ riangle} = \{x \in P | orall a \in A(x \leq a)\} \$

называются верхними и нижними конусами множества А, а их элементы верхними и нижними гранями соответственно.

Точные грани

Пусть $\langle P, \varphi \rangle$ частично упорядоченное множество и $A \subseteq P$

- Наименьший элемент в A^{\triangle} называется точной верхней гранью множества А.
 Наибольший элемент в A^{∇} называется точной нижней гранью множества А.

Теорема Шпильрайна. Линейное продолжение частично упорядоченного множества

Определение

- Линейно упорядоченное множество или цепь частично упорядоченное множество, в котором для любых двух элементов а и b имеет место $a\leqslant b$ или $b\leqslant a$.
- Линеаризация.

Теорема Шпильрайна

- Любой частичный порядок ≤ может быть продлен до линейного на этом же множестве.
- Каждый порядок есть пересечение всех своих линейных продолжений (линеаризацией)

Спектр и размерность частично упорядоченного множества

Определение

Рассмотрим вероятностное пространство на множестве всех линеаризаций частично-упорядоченного множества $\langle P, \leq \rangle$, в котором каждая линеаризация равновероятна. В этом пространстве рассматривают события Е вида $x \leq y$, $(x \leq y) \& (x \leq z)$ и т.д.

Вероятность такого события $Pr[E]=rac{1}{4$ ислолинеаризаций,вкоторыхимеетместоEe(P)

Спектр частично упорядоченного множества

$$Spec(P) = \{Pr[a \leq b] | a, b \in P, a \neq b\}$$

Свойства:

- lacktriangledown спектр симметричен относительно $rac{1}{2}$, поскольку $Pr[a \leq b] = 1 Pr[b \leq a]$
- ullet $\{0,rac{1}{2}\,,1\}$ единственный трехэлементный спектр

Размерность

Наименьшее число линейных порядков, дающих в пересечении данное частично упорядоченное множество P, называется его размерностью dim(P)

Фундаментальная теорема о конечных дистрибутивных решётках.

Определения

Частично упорядоченное множество, для которого для любых двух элементов a, b существуют $Inf\{a,b\}$, $Sup\{a,b\}$ называют решеточно упорядоченным. Решетка называется полной, если любое подмножество ее элементов имеет точные верхнюю и нижнюю грани.

Решётка может быть также определена как алгебра с двумя бинарными операциями (они обозначаются \vee и \wedge или + и \cdot), удовлетворяющая следующим тождествам

- 1. $a \lor a = a$
 - $a \wedge a = a$
- 2. $a \lor b = b \lor a$
 - $a \wedge b = b \wedge a$
- 3. $(a \lor b) \lor c = a \lor (b \lor c)$

$$(a \wedge b) \wedge c = a \wedge (b \wedge c)$$

- 4. $a \wedge (a \vee b) = a$
 - $a \lor (a \land b) = a$

Связь между этими двумя определениями устанавливается при помощи формул:

$$a \vee b = \sup_{a \in A} (a, b),$$

$$a \wedge b = \inf(a, b)$$

и обратно. При этом для любых элементов a и b эквивалентны следующие утверждения:

$$a \wedge b = a$$
;

$$a \lor b = b$$
.

Irr(L) - множество неразложимых в объединение элементов.

$$Irr(x) = \{y \in Irr(L) | y \leq x\}$$
- множество неразложимых элементов в L, содержащихся в х.

Фундаментальная теорема о конечных дистрибутивных решётках

Всякая конечная дистрибутивная решетка L изоморфна решетке порядковых идеалов частично упорядоченного множества ее неразложимых элементов L=J(Irr(L))

Соответствия Галуа.

Определениея

Антимонотонность - $a,b \in P_1 a \leq b o \phi(a) \geq \phi(b)$

Пусть P,Q - частично упорядоченные множества. Пара отображений $(\phi,\psi),\phi:P o Q,\psi:Q o P$, удовлетворяющих свойствам:

- ullet ϕ,ψ антимонотонны.
- ullet $p\phi\psi\geq p,q\psi\phi\geq q$, где $\phi\psi,\psi\phi$ операторы замыкания на P и Q соответственно.

называются соответствием Галуа между Р и Q. Свойство: $\phi = \phi \psi \phi, \psi = \psi \phi \psi$

Источник — «http://bagnikita.dyndns.org/pa/index.php?title=Определения_All&oldid=178» Категория: Определения

- Последнее изменение этой страницы: 22:18, 17 января 2014.
- К этой странице обращались 3 раз.
- Содержимое доступно по лицензии Общественное достояние (если не указано иное).